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Lesson 13: Trees and Graphs 

Objectives 
 

SSttrruuccttuurree  ooff  tthhee  LLeessssoonn 
 



 
 
 
 
 
A tree is a non-linear data structure in which elements are represented as 

nodes and are linked together in hierarchical fashion. A tree has the 

ability to grow and expand, and is therefore a dynamic, flexible, and open-

ended system. 

 
Definition: A tree t is a finite nonempty set of elements. One of these 

elements is called the root, and the remaining elements (if any) are 

partitioned into trees, which are called the subtrees of t.  

 

A tree is drawn with each element represented as a node. The root node 

is drawn at the top, and its subtrees are drawn below. An edge (line) is 

drawn from the tree root to the roots of its subtrees (if any). The roots of 
the subtrees are called children of the root node, and root node is termed 

as their parent. Children of the same parent are called siblings. Each 

subtree is drawn similarly with its root at the top and its subtrees below. In 
a tree, a node with no child nodes is called leaf. The number of children 

of a node is called the degree of that node.  Every node in a tree has a 

level. By definition the tree root is at level 1; Its children (if any) are at 

level 2; Their children (if any) are at level 3; and so on.  

 

Trees are very much useful to represent hierarchical data. Hierarchical 

data has ancestor-descendant, superior-subordinate, or whole-part 

relationship among data elements. For example the subdivisions of a 

government can be shown as in the following tree.  
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The hierarchical administrative structure of a corporation can be shown 

as following tree.  
 

 

 

 

 

 

 

Government 

Education Revenue Defense 

Army Navy Air 
Force 

President 

VP Sales VP Mktg VP Finance VP 
Research 



 

 

 

Binary Tree 
A Binary Tree t is a finite (may be empty) collection of elements, with one 
element designated as root, and the remaining elements partitioned into 

two binary trees, which are called left and right subtrees of t.  

The subtle differences between a tree and a binary tree are given in the 

following table.  

Tree Binary Tree 

A tree cannot be empty A binary tree can be empty 

Each element can have any 

number of subtrees. 

Each element can have exactly 

two subtrees. 

The subtrees are unordered. The subtrees are ordered. 

 

Binary trees are drawn similar to trees, with root node at the top. An 

example for a binary tree is expression tree. Expression trees are used in 

generation of optimal computer code to evaluate an expression. The 

following figures show sample expression trees.  
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Binary Tree Properties 

 The drawing of every binary tree with n (n>0) elements has 

exactly (n-1) edges.  
 The number of levels in a binary tree is called its depth or height. 

 A binary tree of height h, h0, has atleast h and at most 2h-1 

elements in it.  

 The height of a binary tree that contains n, n0, elements is at 

most n and at least log2(n+1). 

 A binary tree with height h, and contains exactly 2h-1 elements is 
called a Full Binary Tree.  

 The nodes in full binary tree are numbered sequentially, starting at 

1,  from level 1 to level h, and from left to right in each level.  

 A binary tree with maximum posible number of nodes at each 
level, except possibly the last is called a complete binary tree.  

 In a binary tree the maximum possible number of nodes at level k 

is 2(k-1). 

 For an element numbered k, in a complete binary tree, if k=1, then 

it is the root element. if k>1, then its parent has been assigned the 

number (int) (k/2).  Its left child is numbered 2k (no left child if 2k > 

n), and right child is numbered 2k+1 (no right child if 2k+1 > n , 

where n is maximum number of nodes). 



Binary Search Tree (BST) 
A BST is a binary tree with the following properties: 

1. Every element has a key (or value). All keys are distinct. 

2. The keys (if any) in the left subtree of the root are smaller than the 

key in the root.  

3. The keys (if any) in the right subtree of the root are larger than the 

key in the root. 

4. The left and right subtrees of the root are also binary search trees. 

 

An example of a binary tree is shown below. (A circle with dotted line 

indicates missing node.) 

 

 

 

 

 

 

 
An example of a binary search tree in which elements have distinct keys 

is shown below.  

Level 1 node 

Level 2 nodes 

Level 3 nodes 

A 

B C 

D E F  



A 

B C 

E D 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
The formula based representation for binary trees makes use of the last 

property stated above for binary trees. In this method, the binary tree is 

represented in an array by storing each element at the array position 

corresponding to the number assigned to it. This representation is more 

suitable to either full or complete binary trees. For other binary trees it is 

inefficient if a number of nodes are missing from the tree. In this method a 

binary tree with n elements may require an array of size up to 2n-1 for its 

representation. The following picture shows a binary tree and its formula-

based representation.  

 A B C  D  E 

1 2 3 4 5 6 7 

20 

15 25 

30 
10 18 
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The Linked representation is a popular way to store binary trees in 

memory. This representation uses links or pointers. A node that has 

exactly two link fields represents each element. The links are called 
left_child and right_child. In addition to these two link fields, each node 

has a field has a field named data. An edge in the drawing of a binary tree 

is represented by, a pointer from the parent node to the child node. This 

pointer is placed in the appropriate link field of the parent node. Since an 

n-element binary tree has exactly n-1 edges, (n+1) link fields are set to 

zero or NULL. The following is the node class for linked representation of 

binary trees: 

template<class T> 

class BinaryTreeNode{ 

    public: 

         BinaryTreeNode() { left_child = right_child = 0; } 

         BinaryTreeNode(const T&e)   { 

                data = e;                left_child = right_child = 0;  

          } 

      private: 

           T data; 

            BinaryTreeNode<T> *left_child, // left subtree 

                                          *right_child; // right subtree. 

}; 
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Common binary tree operations: Some common 

operations on binary trees are: 

 

o Determine its height. 

o Determine the number of elements in it. 

o Make a copy. 

o Delete the tree. 

o Traverse and list the nodes in a tree. 

o Search for a specific node in a tree. 

 
The above said operations can be performed, by traversing the binary 
tree in a systematic manner. In a binary tree traversal, each element  is 

visited exactly once. During this visit the necessary action regarding this 

node is taken. There are four common ways to traverse a binary tree. 

They are: 

A 

B 0 C 0  

D 0 0 E 0 0 

Linked Representation of a binary tree 



 Preorder 

 Inorder 

 Postorder 

 Level order 

 

The first three traversal methods are described in the following recursive 

algorithms and procedures.  
Algorithm for preorder traversal: 

step1: Visit the root node. 

step2: Traverse the left subtree in preorder. 

setp3: Traverse the right subtree in preorder. 

 
 
Recursive implementation of the above algorithm: 

template <class T> 

void preorder(BinaryTreeNode<T> *t) 

{ // preorder traversal of *t. 

    if( t) { 

      visit(t); 

      preorder(t->left_child);   // start preorder traversal of left subtree. 

      preorder(t->right_child);//start preorder traversal of right subtree. 

    } 

} 

 
 
Algorithm for Inorder traversal: 

step1: Traverse the left subtree in inorder. 

step2: Visit the root node. 

setp3: Traverse the right subtree in inorder. 

 



Recursive implementation of the above algorithm: 

template <class T> 

void inorder(BinaryTreeNode<T> *t) 

{ // inorder traversal of *t. 

    if( t) { 

      inorder(t->left_child);   // start inorder traversal of left subtree. 

      visit(t); 

      inorder(t->right_child);//start inorder traversal of right subtree. 

    } 

} 

 

 
 
Algorithm for postorder traversal: 

step1: Traverse the left subtree in postorder. 

setp2: Traverse the right subtree in postorder. 

step3: Visit the root node. 

 

Recursive implementation of the above algorithm: 

template <class T> 

void postorder(BinaryTreeNode<T> *t) 

{ // postorder traversal of *t. 

    if( t) { 

      postorder(t->left_child);   // start inorder traversal of left subtree. 

      postorder(t->right_child);//start inorder traversal of right subtree.  

      visit(t); 

    } 

} 

 



+ 

* / 

d b c a 

The visit() function in the above implementations defines the necessary 

action to be taken on the nodes. Its simplest implementation is to display 

the data at the node.  In the preorder, inorder, and postorder traversal 

methods the left subtree is traversed before the right subtree. The 

difference in these traversals is in the time at which a node is visited. In 

preorder each node is visited before its left and right subtree nodes are 

visited. In inorder traversal, each node is visited after the left subtree 

nodes and  are visited and before the right subtree nodes. In postorder 

traversal, each node is visited after both the left and right subtree nodes 

are visited in that order.  For the expression tree shown below the 

preorder, inorder and postorder traversal methods give the prefix, infix 

and postfix notations of the expression represented by the tree.  

 

 

 

 

Preorder: +*ab/cd 

Inorder:   a*b+c/d 

Postorder: ab*cd/+ 

 

   
The infix form of an expression is the form in which we normally write an 

expression. In this form each binary operator appears between its 

operands. In the prefix form each operator comes immediately before the 

prefix from of its operands. The operands appear in left to right order. In 

postfix notation each operator comes immediately after the postfix form of 

its operands. The operands appear in left to right order.  



Level order traversal:  In a level order traversal of a binary tree, the 

elements are visited by level from top to bottom. Within each level, 

elements are visited from left to right. The following function shows an 

implementation of the level order traversal of a binary tree.  

 // level order traversal. 

template <class T> 

void levelorder(BinaryTreeNode<T> *t) 

{ // levelorder traversal of *t. 

    LinkedQueue<BinaryTreeNode<T>*> q; 

    while( t) { 

      visit(t);  

      if (t->left_child) q.add(t->left_child); 

      if (t->right_child) q.add(t->right_child);  

      // get next node to visit. 

       try { q.delete(t); } catch(OutOfBounds) {return;} 

    } 

} 

 

The space complexity of each of the four traversal programs is O(n) and 

time complexity is (n), where n is the number of nodes in the binary tree.  

 



 

 

 

 
Having some understanding of binary tree, we can specify an ADT for 

binary tree as below. 

 
AbstractDataType BinaryTree{ 

instances: collection elements; if not empty, the collection is 

partitioned into a root, left subtree, and right subtree; each subtree is 

also binary tree.  
operations:  
Create(): Create an empty binary tree. 
IsEmpty(): Return true if empty, false otherwise.  

MakeTree(root, left, right): create a binary tree with root as the root   

                                        element, left and right subtrees.  

PreOrder(): Do preorder traversal of the binary tree. 

Inorder(): Do inorder traversal of the binary tree. 

Postorder(): Do postorder traversal of the binary tree. 

LevelOrder(): Do level order traversal of the binary tree. 

} 

 

1133..55..  BBiinnaarryy  TTrreeee  AADDTT    &&  IImmpplleemmeennttaattiioonn  



The following program gives the implementation of the binary tree ADT.  

 

#ifndef BinaryTree_ 

#define BinaryTree_ 

int _count; 

 

#include<iostream.h> 

#include "lqueue.h" 

#include "btnode2.h" 

#include "xcept.h" 

 

template<class E, class K> class BSTree; 

template<class E, class K> class DBSTree; 

 

template<class T> 

class BinaryTree { 

   friend BSTree<T,int>; 

   friend DBSTree<T,int>; 

   public: 

      BinaryTree() {root = 0;}; 

      ~BinaryTree(){};  

      bool IsEmpty() const 

        {return ((root) ? false : true);} 

      bool Root(T& x) const; 

      void MakeTree(const T& element, 

           BinaryTree<T>& left, BinaryTree<T>& right); 

      void BreakTree(T& element, BinaryTree<T>& left, 

                    BinaryTree<T>& right); 

      void PreOrder(void(*Visit)(BinaryTreeNode<T> *u)) 

           {PreOrder(Visit, root);} 



      void InOrder(void(*Visit)(BinaryTreeNode<T> *u)) 

           {InOrder(Visit, root);} 

      void PostOrder(void(*Visit)(BinaryTreeNode<T> *u)) 

           {PostOrder(Visit, root);} 

      void LevelOrder(void(*Visit)(BinaryTreeNode<T> *u)); 

      void PreOutput() {PreOrder(Output, root); cout << endl;} 

      void InOutput() {InOrder(Output, root);  

       cout << endl;} 

      void PostOutput() {PostOrder(Output, root);  

        cout << endl;} 

      void LevelOutput() {LevelOrder(Output);  

        cout << endl;} 

      void Delete() {PostOrder(Free, root); root = 0;} 

      int Height() const {return Height(root);} 

      int Size() 

         {_count = 0; PreOrder(Add1, root); return _count;} 

   private: 

      BinaryTreeNode<T> *root;  // pointer to root 

      void PreOrder(void(*Visit) 

        (BinaryTreeNode<T> *u), BinaryTreeNode<T> *t); 

      void InOrder(void(*Visit) 

        (BinaryTreeNode<T> *u), BinaryTreeNode<T> *t); 

      void PostOrder(void(*Visit) 

        (BinaryTreeNode<T> *u), BinaryTreeNode<T> *t); 

      static void Free(BinaryTreeNode<T> *t) {delete t;} 

      static void Output(BinaryTreeNode<T> *t) 

                  {cout << t->data << ' ';} 

      static void Add1(BinaryTreeNode<T> *t) {_count++;} 

      int Height(BinaryTreeNode<T> *t) const; 

}; 



 

template<class T> 

bool BinaryTree<T>::Root(T& x) const 

{// Return root data in x. 

 // Return false if no root. 

   if (root) {x = root->data; 

              return true;} 

   else return false;  // no root 

} 

 

template<class T> 

void BinaryTree<T>::MakeTree(const T& element, 

          BinaryTree<T>& left, BinaryTree<T>& right) 

{// Combine left, right, and element to make new tree. 

 // left, right, and this must be different trees. 

   // create combined tree 

   root = new BinaryTreeNode<T> 

              (element, left.root, right.root); 

   // deny access from trees left and right 

   left.root = right.root = 0; 

} 

 

template<class T> 

void BinaryTree<T>::BreakTree(T& element, 

       BinaryTree<T>& left, BinaryTree<T>& right) 

{// left, right, and this must be different trees. 

   // check if empty 

   if (!root) throw BadInput(); // tree empty 

 

 



   // break the tree 

   element = root->data; 

   left.root = root->LeftChild; 

   right.root = root->RightChild; 

   delete root; 

   root = 0; 

} 

template<class T> 

void BinaryTree<T>::PreOrder( 

           void(*Visit)(BinaryTreeNode<T> *u),  BinaryTreeNode<T> *t) 

{// Preorder traversal. 

   if (t) { 

               Visit(t); 

       PreOrder(Visit, t->LeftChild); 

       PreOrder(Visit, t->RightChild); 

           } 

} 

template <class T> 

void BinaryTree<T>::InOrder( 

       void(*Visit)(BinaryTreeNode<T> *u),  BinaryTreeNode<T> *t) 

{// Inorder traversal. 

   if (t) { 

              InOrder(Visit, t->LeftChild); 

       Visit(t); 

       InOrder(Visit, t->RightChild); 

           } 

} 

 

 

 



template <class T> 

void BinaryTree<T>::PostOrder( void(*Visit)(BinaryTreeNode<T> *u), 

     BinaryTreeNode<T> *t)  {// Postorder traversal. 

   if (t) { 

           PostOrder(Visit, t->LeftChild); 

           PostOrder(Visit, t->RightChild); 

           Visit(t); 

           } 

} 

template <class T> 

void BinaryTree<T>::LevelOrder( void(*Visit)(BinaryTreeNode<T> *u)) 

  {// Level-order traversal. 

   LinkedQueue<BinaryTreeNode<T>*> Q; 

   BinaryTreeNode<T> *t; 

   t = root; 

   while (t) { 

      Visit(t); 

      if (t->LeftChild) Q.Add(t->LeftChild); 

      if (t->RightChild) Q.Add(t->RightChild); 

      try {Q.Delete(t); 

      } 

      catch (OutOfBounds) {return;} 

      } 

} 

 

template <class T> 

int BinaryTree<T>::Height(BinaryTreeNode<T> *t) const 

{// Return height of tree *t. 

   if (!t) return 0;               // empty tree 

   int hl = Height(t->LeftChild);  // height of left 



   int hr = Height(t->RightChild); // height of right 

   if (hl > hr) return ++hl; 

   else return ++hr; 

} 

#endif 

 

  

 
 
 
A graph is a collection of nodes, pairs of which are joined by lines or 
edges. A more formal definition can be given as: 
Definition:  A graph G = (V,E) is an ordered pair of finite sets V and E. 
The elements of V are called vertices or nodes or points. The elements 
of E are called edges. Each edge in E joins two different vertices of V and 
is denoted by the ordered pair (i,j), where I and j are the two vertices.  
A graph is displayed with nodes as circles and edges as lines. The edges 
may have a orientation. An edge with an orientation is called a directed 
edge. An undirected edge  has no orientation. If all the edges in a graph 
are directed then it is called a directed graph or digraph. Two vertices i 
and j are called adjacent if and only if there is an edge from vertex i to 
vertex j. The edge (i,j) is incident on vertices i and j. When weights have 
been assigned to edges, then that graph is called a weighted graph. 
Some examples of graphs are shown below: 
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Path: a sequence of vertices P = i1, i2,… ,ik is an i1 to ik path in the graph 
or digraph G = (V,E) if and only if the edge (ij,ij+1) is in E for every j, 1  j < 
k.  
 
Simple path: It is a path in which all vertices, except possibly the first and 
last, are different.  
 
Length of a path: The length of a path is the number of edges involved in 
that path.  
 
Cycle: A cycle is a simple path with the same start and end vertex.  
 
Subgraph: A graph H is a subgraph of another graph G if and only if its 
vertex and edge sets are subsets of those of G.  
 

weighted graph 

12 

10 

18 
24 

1 

3 6 7 

2 

5 

4 

28 

16 
14 

25 

22 



Connected graph: A graph G is connected if and only if there is a path 
between every pair of vertices in G.  
 
Note: A connected undirected graph that contains no cycles is a tree.  
 
Spanning tree: A subgraph of G that contains all the vertices of G and is 
a tree is a spanning tree of G.  
 
Some properties of graphs: 

1) A connected graph with n vertices must have at least n-1 edges.  
2) Let G be an undirected graph. The degree di of vertex i is the 

number of edges incident on vertex i.  
3) An n-vertex graph with n(n-1)/2 edges is a complete graph. 
4) Let G be a digraph. The in-degree di

in of vertex i is the number of 
edges incident to i. The out-degree di

out of vertex i is the number of 
edges incident from this vertex.  

5) A complete digraph with n vertices  contains exactly n(n-1) 
directed edges. 

 
The ADTs Graph and Digraph 
 The abstract data type Graph refers to undirected graphs. The 
abstract data type Digraph refers to digraphs. The below listing gives the 
ADTs Graph and Digraph.  
 
 
AbstractDataType Graph{ 

instances 
a set V of vertices and a set E of edges 

operations 
Create(n): create an undirected graph with n vertices and no edges 
 
Exist(i,j): return true if edge (i,j) exists, false otherwise 
 
Edges(): return the number of edges in the graph 
Vertices(): return the number of vertices in the graph 
 
Add(i,j): add the edge (i,j) 
 
Delete(i,j): delete the edge (i,j) 
 
Degree(i): return the degree of vertex i.  

} 
 
 
 



AbstractDataType DiGraph{ 
instances 

a set V of vertices and a set E of edges 
operations 

Create(n): create a directed graph with n vertices and no edges 
 
Exist(i,j): return true if edge (i,j) exists, false otherwise 
 
Edges(): return the number of edges in the graph 
 
Vertices(): return the number of vertices in the graph 
 
Add(i,j): add the edge (i,j) to the graph 
 
Delete(i,j): delete the edge (i,j) 
 
InDegree(i): return the in-degree of vertex i.  
 
OutDegree(i): return the out-degree of vertex i 

} 
 
 
 
 
 
The most frequently used representation schemes for graphs and 
digraphs are adjacency based: adjacency matrices, and adjacency lists.  
 
Adjacency Matrix  
The adjacency matrix of an n-vertex graph G = (V,E) is an n x n matrix A. 
Each element of A is either zero or one. We shall assume that V = 
{1,2,…,n}. If G is an undirected graph, then the elements of A are defined 
as follows: 
  

  1   if (i,j)  E or (j,i)  E 
A(i,j) =   

0 otherwise 
 
If G is a digraph, then the elements of A are defined as follows:  
 
  

  1   if (i,j)  E   
A(i,j) =   

0 otherwise 
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The adjacency matrices for two graphs are as shown here.  
 

 
 
 
 
 
 
 
 
 

Adjacency matrix: 
 
 
 
 

 1 2 3 4 
1 0 1 1 1 
2 1 0 1 0 
3 1 1 0 1 
4 1 0 1 0 

 
 
 
 
 
 
 
 
 
 
 
 

Adjacency matrix: 
 
         

 1 2 3 4 5 6 
1 0 0 1 1 0 0 
2 0 0 1 0 0 0 
3 0 0 0 0 1 1 
4 0 1 1 0 0 0 
5 1 0 1 1 0 0 
6 0 0 0 0 1 0 

 

 
The n x n adjacency matrix A may be mapped into a array of the same 
size or of size (n+1) x (n+1) of type int using the mapping A(i,j) = A[i][j], 
where 1  i  n, and 1  j  n.  
 
Adjaceny Lists 
In the case of adjaceny lists (or linked-adjacency lists), each adjacency 
list is maintained as a chain. The adjacency lists of the above given two 
grapsh are as shown. 
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Adjacency List: 
 
 
 
 

 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 

Adjacency List: 
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Many operations on graph require traversing its nodes. There are two 
standard ways to do this. These are known as search methods. They are 
Breadth-First search and Depth-First Search. Although both methods are 
popular, Depth-First search is used frequently. 
 
Breadth-First Search (BFS) 
 
This method proceeds by starting at a vertex and identifying all vertices 
reachable from it. i.e. identifying all adjacent vertices to it and repeating 
this procedure from each such vertex in that order until all the vertices are 
visited. The queue data structure is used to perform this search. The tree 
resulting from this search is called Breadth first search spanning tree. The 
following is the pseudo code for BFS. 
 
//Breadth first search beginning at vertex v. 
Label vertex v as reached; 
Initialize Q to be a queue with only v in it; 
while(Q is not empty)  
{ 

Delete a vertex w from the queue; 
Let u be a vertex (if any) adjacent from w; 

while(u){ 
   if (u has not been labeled) 
   { 
       Add u to the queue; 
       Label u as reached; 
       u = next vertex that is adjacent from w; 
   } 
} 

} 
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Depth-First Search (DFS) 
 
This is an alternative to BFS. Starting at a vertex v, the DFS proceeds as 
follows: First the vertex v s marked as visited, and then an unreached 
vertex u adjacent from v is selected. If such a vertex does not exist, the 
search terminates. If u exists, the DFS is now initiated from u. When this 
search is completed, another vertex adjacent from v is selected, and the 
process continues until no such un visited vertex exists. The tree obtained 
from DFS is called DFS spanning tree. The pseudo code for DFS is given 
below. 
 
//Depth first search beginning at vertex v. 
Label vertex v as reached; 
Initialize S to be a stack with only v on its top; 
while(S is not empty)  
{ 

pop a vertex w from the stack S; 
Let u be a vertex (if any) adjacent from w; 

   if (u has not been labeled) 
   { 
       push u on to the stack S; 
       Label u as reached; 
    } 
} 

} 
 
 
 
 
 

(a) Directed Graph   (b)Breadth-First Search Tree of Graph in (a). 



 
 
 
 
In computer science, a tree is a widely-used computer data structure that 
emulates a tree structure with a set of linked nodes. It is a special case of 
a graph. A tree is considered as a recursive structure that usually maps 
an ordered set of data from an internal definition to some data space. 
Each node in a tree has zero or more child nodes, which are below it in 
the tree. A node that has a child is called the child's parent node. A child 
has at most one parent; The topmost node in a tree is called the root 
node. Being the topmost node, the root node will not have parents. 
Nodes at the bottom most level of the tree are called leaf nodes. Since 
they are at the bottom most level, they will not have any children. A 
binary tree is a rooted tree in which every node has at most two 
children. A full binary tree is a tree in which every node has zero or two 
children. Also known as a proper binary tree. A perfect binary tree is a 
full binary tree in which all leaves (vertices with zero children) are at the 
same depth (distance from the root, also called height). 
 
Pre-order, in-order, and post-order traversal visit each node in a tree by 
recursively visiting each node in the left and right subtrees of the root. If 
the root node is visited before its subtrees, this is preorder; if after, 
postorder; if between, in-order. In-order traversal is useful in binary 
search trees, where this traversal visits the nodes in increasing order.  
a graph is an abstract data type (ADT) that consists of a set of nodes and 
a set of edges that establish relationships (connections) between the 
nodes. 
 
A graph G is defined as follows: G=(V,E), where V is a finite, non-empty 
set of vertices and E is a set of edges (links between pairs of vertices). 
When the edges in a graph have no direction, the graph is called 
undirected, otherwise called directed. In practice, some information is 
associated with each node and edge. 
 
An adjacency list associates each node with an array of incident edges. If 
no information is required to be stored in edges, only in nodes, these 
arrays can simply be pointers to other nodes and thus represent edges 
with little memory requirement. An advantage of this approach is that new 
nodes can be added to the graph easily, and they can be connected with 
existing nodes simply by adding elements to the appropriate arrays. A 
disadvantage is that determining whether an edge exists between two 
nodes requires O(n) time, where n is the average number of incident 
edges per node. 
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An alternative way is to keep a square matrix (a two-dimensional array) M 
of boolean values (or integer values, if the edges also have weights or 
costs associated with them). The entry Mi,j then specifies whether an 
edge exists that goes from node i to node j. An advantage of this 
approach is that finding out whether an edge exists between two nodes 
becomes a trivial constant-time memory look-up. Similarly, adding or 
removing an edge is a constant-time memory access.  
 
In depth-first order, we always attempt to visit the node farthest from the 
root that we can, but with the caveat that it must be a child of a node we 
have already visited. Unlike a depth-first search on graphs, there is no 
need to remember all the nodes we have visited, because a tree cannot 
contain cycles. Preorder, in-order, and postorder traversal are all special 
cases of this. Contrasting with depth-first order is breadth-first order, 
which always attempts to visit the node closest to the root that it has not 
already visited. 

 

 

Tree 
A tree is a non-linear data structure in which elements are 

represented as nodes and are linked together in hierarchical fashion. 
 
Root 

A root node is a specially chosen node in a tree data structure at 
which all operations on the tree begin 
 
Degree 

The number of children of a node is called the degree of that 
node.   
 
Leaf  

A node with no child nodes is called leaf. 
 
Binary Tree 

A binary tree is a rooted tree in which every node has at most 
two children. 
 
Graph 

A graph is a collection of nodes, pairs of which are joined by lines 
or edges. 
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1. Define a Tree. Describe its properties. 
2. Describe Tree Traversal techniques. 
3. Implement a Binary Tree and its operations using C++. 
4. Discuss different Memory Representations of Trees. 
5. Define a Graph. Discuss its Memory Representations. 
6. State the difference and similarity between a Tree and a Graph. 
7. Discuss DFS and BFS procedures. 
8. Implement Graph search algorithms using C++; 
9. Write the ADTs for Tree and Graph. 
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